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» For fixed H, the minimizer w.r.t. W: W*(H) = YH'(HH" + nAyI,;)"1
“ (H) ( wla) where H, ;5 = min f(W*(H),H; Hy) = min L(W*"(H),H ) + % |H — Hy||%

» DNN-based classifiers (of K classes) can be typically represented as : : S T
0= }(’5) +by p Theorem 3.1 in [Tirer & Bruna, 2022] (characterization of minimizers) IVIVHE F(W, H; Ho) i= -1 |WH — V|2 + 2% | W2 + 22| H||2 + 2| H — Hy|)2
| 0 o | Let d > K, ¢ := v ArAw and p = max{(1 — ¢)v/Aw /A, 0}. Any global
where x € R is the sample, hg(-): R? - R% is the (deep) feature mapping, and minimizer (W*, H*) of » The f > 1 case: can be interpreted as simple architecture between H, and H
(W € R¥*%, b € R¥} is the last layer classifier. Learnable params: ® = {W, b, 6}. | A o A , that significantly constrains H (e.g., H, are features one layer before H)

» Common practice: Keep optimizing the network's parameters after the training error W eRK XIE{IBERden LW, H) = 2Kn > IWH — YH F 2K |WI[F - 2Kn IHIF » Practical DL motivation for H = H,: some ResNets, neural ODE, and DEQ
vanishes to further push the training loss toward zero. _ _

» The “Neural Collapse” (NC) phenomenon [Papyan et al. (2020)] has been empirically obeys that H* = H® 1, for some H:=[h{,... hg] € RIK, Corollary (Transferring orthogonal collapse properties from Ho)
observed in this phase of training with CE loss (or MSE loss [Han et al. (2022)]): w*' = \/)\H/)\WH, and Let d > K, AgAw < 1, and let (W*, H*) be a minimizer of L(W/, H). Then, the
Let H = |hg(x11), ., hg(X1p), - - hg(xg 1), -, hg(xk )| € REKT H H oly — (H-— thT) (H — hGlT) — (I — llKl T minimizer of f(W, H; Hy = H*) is unique and it is given by (W*, H*). )
» (NC1): Decrease in within-class variability of features hg(x): y

H H-—H®R 1TH decreases, where H := [El, - EK] e RAXK jre classes’ mean features . —— » Since we know a lot on (W*, H*) minimizer of UFM — we can explore the
e o . » New & useful NCl metric: | NC,(H) := trace (Xw(H)) /trace (Xg(H)) near-collapse regime via perturbation analysis
» (NC2): Increase in the similarity of the mean features to a simplex ETF structure: -y . . |
T T = ) i} Yw(H) and X5 (H) are the within- and between-class covariance matrices » First order optimality condition:
‘ (H—hglK) (H—hGlK)—p(IK—ElKlK)” decreases, for some p > 0 . . 1 + H. .. —H
F B » More amenable for theoretical analysis than NC;(H) := Etrace(ZW(H)Z = (H)) 1/b 0 _ _knv L(W* ( Hl/ﬁ) Hl/ﬁ)
» (NC3): Increase in the alignment of the last weights W' and the mean features H: 1/p

W(H — hg1}) - p (IK — %1,{1}) HFdecreases, for some p > 0

» [Han et al. (2022)] empirically showed that |[WH — Y||% — ||W*(H)H — Y||% H H
Empirical observations in practical settings: is small during MSE minimization of practical DNN classifiers Corollary (Depthwise decrease in NC1 — via gradient flow theory)
+ “NC metrics” typically plateau above zero Theorem (NC1 metric decreases along the gradient flow) Assume that Hy is non-collapsed (i.e., ¥w(Hp) # 0). For 5 > C = C(Hp), the
(even when reducing LR) Aka ¢ Assume that Ay > 0, Ay > 0, and that Hy is non-collapsed (i.e., Xy (Hy) # 0). minimizer of f, H 5, obeys NC1(Hy/3) < NC1(Ho). )
* The margin from exact NC depends on the dataset s Then, along the gradient flow: <7t = —KnVL(W*(H,), H;) s
complexity, DNN architecture, hyperparameter \;C o //V\El(Ht) strictly decreases along the flow until it reaches zero. > Numerical results: 12 -
tuning, etc. N - )
5 | _ . . e e g o t— e*Mttrace(Byw(H;)) decreases along the flow. fframmg an MLP on CIFAR-10 2
. IrEter.eit.mgldepthV\.nie. ;t?ehagl((j)i‘: grad.ual reduction In particular, when Ay > 0, trace(EZw(H;)) decays exponentially. in layer-wise fashion 2 |
of within-class variability ( metric) o t— e’ Mttrace(Xg(H;)) strictly increases along the flow. (akm to upda’Flng H, in our model O
y with the previous Hy /5 ) 3
/- '\ » We got with minimal assumptions : separation between the behavior of Z, 0] ; 7 I

The Unconstrained Features Model (UFM) " and E; along the flow, NC; — 0 exponentially if 4y > 0, AN y

Training ResNet18 on CIFAR-10 with various weight decay (WD) settings —
Moditying WD of feature mapping: more deviation from the baseline than modifying WD of last layer

» The typical way to optimize the DNN'’s parameters (empirical risk minimization): s N
Analysis of the Near-Collapse Regime » Insights gained from the model:
m@;n Kn Z Z L(Whé’ (Xk,i) + b, yk) + R(0) Theorem (Perturbation analysis around collapse for 5 > 1) * Increasing Ay : increasing the intra-class (diagonal) blocks attenuation
k=11=1 * Increasing Ay, : increasing the inter-class “interference” blocks attenuation
where y, € RXis one-hot vector, L(,-) is a loss function (e.g., CE or MSE) and R(+) is a Let d > K, AyAw < 1, and Hy = H* where (W*, H*) is a minimizer of L (i.e., * Main insight: the intra-class blocks (the effect of perturbation in a certain class in H
regularization term (e.g., squared £,-norm) collapsed). Set 0Hp, and let (W* H *) be the minimizer of f(-, - HO = Hy +9 HO) on the features of the same class in H) are the dominant. So Ay plays the major role.
. . . Define SH = H* — H*. * NCI metric is less affected by the perturbations than other NC metrics (e.g., NC2)

» [Mixon et al. (2020)] suggested to explore NC via the Unconstrained Features Model = LA ) o . £ O(5-2. |15 Ho |2

(UFM) — the features {hk ; — he (xk l)} are free Optimizatign Variables: o 6 > I?&X{ H} S Mehiis (WI apprOXIma (I?)n eI € (6 H H )) 4 Numerical reSU.ltS: (*more results in the paper, including an “interference” StlldY)
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» Most (if not all) of the existing theoretical works on NC consider UFM settings.
The typical result: All the minimizers exhibit exact NC structures (zero NC metrics)
with no effect of regularization hyperparameters on the structure
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Consider the setting of the previous theorem and let k, k € [K] with k # k. 90 N~ S O i SO A (O

\b UFMs limitations: cannot explain the aforementioned observations / We have that Fy 4 is full rank, F, ; is rank-1, omax(Fix) =Lland | w .= E
Y ! ! ’ - o VI — Baseline (last features) Baseline (iast features) o ) — Baseline (last features
? T T T T CE ‘l\\f :WDXZforW
p < B 1 1 _ 0.201 WDx2 for H 06
I . Omin(Fkk) =1—0 \/)\H/)\W 3 =
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» Exploiting knowledge on gradient dynamics and minimizers of UFMs for studying ) | = N R PR
practical (non-exact) NC behavior. | (*Actually, we compute the entire spectra) Spoctum ol F,, ) y
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