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The Neural Collapse (NC) Phenomenon
} DNN-based classifiers (of 𝐾 classes) can be typically represented as

𝝍𝚯 𝒙 = 𝑾𝒉𝜽 𝒙 + 𝒃
where 𝒙 ∈ ℝ# is the sample, 𝒉𝜽 ⋅ : ℝ# → ℝ$ is the (deep) feature mapping, and                            
𝑾 ∈ ℝ%×$ , 𝒃 ∈ ℝ% is the last layer classifier. Learnable params: 𝚯 = 𝑾, 𝒃, 𝜽 .

} Common practice: Keep optimizing the network's parameters after the training error 
vanishes to further push the training loss toward zero.

} The “Neural Collapse” (NC) phenomenon [Papyan et al. (2020)] has been empirically 
observed in this phase of training with CE loss (or MSE loss [Han et al. (2022)]):
Let  𝑯 ≔ 𝒉𝜽(𝒙','), … , 𝒉𝜽(𝒙',)), …… , 𝒉𝜽(𝒙%,'), … , 𝒉𝜽(𝒙%,)) ∈ ℝ$×%).
} (NC1):   Decrease in within-class variability of features 𝒉𝜽 𝒙 :

𝑯 − 𝑯⊗ 𝟏)* + decreases, where 𝑯 ≔ 𝒉', … , 𝒉% ∈ ℝ$×% are classes’ mean features

} (NC2):   Increase in the similarity of the mean features to a simplex ETF structure:
𝑯 − 𝒉,𝟏%*

*
𝑯 − 𝒉,𝟏%* − 𝜌 𝑰% −

'
%
𝟏%𝟏%* +

decreases, for some 𝜌 > 0

} (NC3):   Increase in the alignment of the last weights 𝑾* and the mean features 𝑯:   
𝑾 𝑯− 𝒉,𝟏%* − =𝜌 𝑰% −

'
%
𝟏%𝟏%* +

decreases, for some =𝜌 > 0

Existing and New UFM Results

} New & useful NC1 metric:
𝚺- 𝑯 and 𝚺.(𝑯) are the within- and between-class covariance matrices

} More amenable for theoretical analysis than 𝑁𝐶'(𝐻) ≔
'
%
trace 𝚺- 𝑯 𝚺.

/(𝑯)

} For fixed 𝑯, the minimizer w.r.t. 𝑾:   𝑾∗ 𝑯 = 𝒀𝑯* 𝑯𝑯* + 𝑛𝜆-𝑰$ 1'

} [Han et al. (2022)] empirically showed that 𝑾𝑯− 𝒀 +
2 − 𝑾∗ 𝑯 𝑯 − 𝒀 +

2

is small during MSE minimization of practical DNN classifiers

} We got with minimal assumptions : separation between the behavior of 𝚺-
and 𝚺. along the flow, J𝑁𝐶' → 0 exponentially if 𝜆3 > 0, The Unconstrained Features Model (UFM)

} The typical way to optimize the DNN’s parameters (empirical risk minimization):

min
𝚯

1
𝐾𝑛

O
45'

%

O
65'

)

ℒ 𝑾𝒉𝜽(𝒙4,6) + 𝒃, 𝒚4 + ℛ(𝚯)

where 𝒚4∈ ℝ%is one-hot vector, ℒ(⋅,⋅) is a loss function (e.g., CE or MSE) and ℛ(⋅) is a 
regularization term (e.g., squared ℓ𝟐-norm)

} [Mixon et al. (2020)] suggested to explore NC via the Unconstrained Features Model 
(UFM) – the features 𝒉4,6 ≔ 𝒉𝜽 𝒙4,6 are free optimization variables:

min
𝑾,𝒃, 𝒉!,#

1
𝐾𝑛

O
45'

%

O
65'

)

ℒ 𝑾𝒉4,6 + 𝒃, 𝒚4 + ℛ(𝑾, 𝒃, 𝒉4,6 )

} Most (if not all) of the existing theoretical works on NC consider UFM settings.
The typical result: All the minimizers exhibit exact NC structures (zero NC metrics) 
with no effect of regularization hyperparameters on the structure

} UFMs limitations: cannot explain the aforementioned observations

Analysis of the Near-Collapse Regime

Bar-Ilan University

Empirical observations in practical settings:
• “NC metrics” typically plateau above zero 

(even when reducing LR)
• The margin from exact NC depends on the dataset 

complexity, DNN architecture, hyperparameter 
tuning, etc. 

• Interesting depthwise behavior: gradual reduction 
of within-class variability (NC1 metric)

This Work Is About:
} Exploiting knowledge on gradient dynamics and minimizers of UFMs for studying 

practical (non-exact) NC behavior.

J𝑁𝐶'(𝐻) ≔ trace 𝚺- 𝑯 ∕ trace 𝚺.(𝑯)

The Unconstrained Features Model

Most (if not all) of the existing theoretical works on NC consider UFM settings, for
which all the minimizers exhibit exact NC structures (e.g., [Lu et al., 2020; Zhu et
al., 2021; Fang et al., 2021; Tirer & Bruna, 2022; Thrampoulidis et al., 2022]).

Theorem 3.1 in [Tirer & Bruna, 2022] (characterization of minimizers)

Let d � K , c :=
p
�H�W and ⇢ := max{(1� c)

p
�W /�H , 0}. Any global

minimizer (W ⇤,H⇤) of

min
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Similarly to other UFM settings, the minimizers demonstrate:
“Exact NC1”: H

⇤ = H ⌦ 1>
n

“Exact NC2”: H
>
H = ⇢IK (exact sETF after reducing global mean)

No e↵ect of n,�H ,�W on the structure of the minimizer
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New Model: Constraining the UFM

} The 𝛽 ≫ 1 case: can be interpreted as simple architecture between 𝑯; and 𝑯
that significantly constrains 𝑯 (e.g., 𝑯; are features one layer before 𝑯)

} Practical DL motivation for 𝑯 ≈ 𝑯;: some ResNets, neural ODE, and DEQ

} Since we know a lot on 𝑾∗, 𝑯∗ minimizer of UFM — we can explore the 
near-collapse regime via perturbation analysis

} First order optimality condition:
𝑯'∕= − 𝑯;

1 ∕ 𝛽
= −𝐾𝑛∇ℒ 𝑾∗ 𝑯 ⁄' = , 𝑯 ⁄' =

where 𝑯'∕= = min
𝑯
𝑓 𝑾∗ 𝑯 ,𝑯;𝑯; = min

𝑯
ℒ 𝑾∗ 𝑯 ,𝑯 + =

2%)
𝑯 − 𝑯; +

2

} Numerical results: 

Training an MLP on CIFAR-10 
in layer-wise fashion 
(akin to updating 𝑯; in our model 
with the previous 𝑯'∕= ) 

Constraining the UFM

Recall the UFM: min
W ,H

L(W ,H) := 1
2KnkWH � Y k2

F
+ �W

2K kW k2
F
+ �H

2KnkHk2
F

We consider a “penalized” variant:

min
W ,H

f (W ,H ;H0) :=
1

2KnkWH �Y k2
F
+ �W

2K kW k2
F
+ �H

2KnkHk2
F
+ �

2KnkH � H0k2F
The � � 1 case: can be interpreted as a simple architecture between H0 and H

(e.g., a single layer) that significantly constrains H . (Practical DL motivation)

Corollary (Decrease in NC1 – via gradient flow theory)

Assume that H0 is non-collapsed (i.e., ⌃W (H0) 6= 0). Then, there exists some
constant C = C (H0) > 0 such that for � > C the minimizer of f , H̃

⇤, obeys
gNC 1(H̃⇤) < gNC 1(H0).

Corollary (Transferring orthogonal collapse properties from H0)

Let d � K , �H�W < 1, and let (W ⇤,H⇤) be a minimizer of L(W ,H). Then, the
minimizer of f (W ,H ;H0 = H

⇤) is unique and it is given by (W ⇤,H⇤).

Since we know a lot on (W ⇤,H⇤) — we can explore the near-collapse regime via
perturbation analysis
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Gradient Flow for UFM with MSE Loss

Consider: min
W ,H

L(W ,H) := 1
2KnkWH � Y k2

F
+ �W

2K kW k2
F
+ �H

2KnkHk2
F

The minimizer w.r.t. W has a closed-form expression (function of H):

W
⇤(H) = YH

>(HH
> + n�W Id)

�1

Han et al. (2022) empirically showed that kWH �Y k2
F
� kW ⇤(H)H �Y k2

F

(gap from “central path”) is small during MSE minim. with practical DNNs

Define the NC1 metric

gNC 1(H) := trace (⌃W (H)) /trace (⌃B(H))

Theorem (NC1 metric decreases along the gradient flow)

Assume that �W > 0, �H � 0, and that H0 is non-collapsed (i.e., ⌃W (H0) 6= 0).
Then, along the gradient flow: dHt

dt
= �KnrL(W ⇤(Ht),Ht)

gNC 1(Ht) strictly decreases along the flow until it reaches zero.

t 7! e
2�Httrace(⌃W (Ht)) decreases along the flow. In particular, when

�H > 0, trace(⌃W (Ht)) decays exponentially.

t 7! e
2�Httrace(⌃B(Ht)) strictly increases along the flow.
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Constraining the UFM

Theorem (Perturbation analysis around collapse for � � 1)

Let d > K , �H�W < 1, and H0 = H
⇤ where (W ⇤,H⇤) is a minimizer of L (i.e.,

collapsed). Set �H0, and let (W̃ ⇤, H̃⇤) be the minimizer of f (·, ·; H̃0 = H0+ �H0).
Define �H := H̃

⇤ � H
⇤.

For � � max{1,�H} we have (with approximation error of O(��2, k�H0k2))2
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...
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0 )
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0 )

3

75

Block-based representation:

2
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...
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3

75 ⇡
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64
F1,1 . . . F1,K

. . .
FK ,1 . . . FK ,K

3

75

2

64
vec(�H(1)

0 )
...

vec(�H(K)
0 )

3

75 ,

where �H(k) 2 Rd⇥n is the sub-matrix of �H 2 Rd⇥Kn that is composed of the
columns associated with the kth class (and similarly for �H0).
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Constraining the UFM

Theorem (Spectral analysis of inter/intra class blocks)

Consider the setting of the previous theorem and let k , k̃ 2 [K ] with k 6= k̃ .
We have that Fk,k is full rank, F

k,k̃ is rank-1, �max(Fk,k) = 1 and

�min(Fk,k) = 1� ��1
p

�H/�W

�max(Fk,k̃) = 2��1�H(1�
p
�H�W )

(*Actually, we compute the entire spectra)

Actually, we derive expressions for the complete eigen-decomposition of Fk,k

Figure: Spectrum of Fk,k for K = 4, d = 10, n = 10, �W =
p
2 and various values of �H .

Increasing �H : increasing the intra-class (diagonal) blocks attenuation
Increasing �W : increasing the inter-class “interference” blocks attenuation
Main insight: the intra-class blocks (the e↵ect of perturbation in a certain
class in H0 on the features of the same class in H) are the dominant blocks.
So �H plays the major role.
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𝐾 = 4
𝑑 = 10
𝑛 = 10
𝜆! = 2

Our Numerical Results - ResNet18 CIFAR10

Practical DNNs: Regularizing the feature mapping is more crucial for
(near-)collapse than regularizing the final classification layer
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Our Numerical Results - ResNet18 CIFAR10

Practical DNNs: Regularizing the feature mapping is more crucial for
(near-)collapse than regularizing the final classification layer
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Insights gained from the model: 
• Increasing 𝜆! : increasing the intra-class (diagonal) blocks attenuation
• Increasing 𝜆" : increasing the inter-class “interference” blocks attenuation
• Main insight: the intra-class blocks (the effect of perturbation in a certain class in 𝑯#

on the features of the same class in 𝑯) are the dominant. So 𝜆! plays the major role.
• NC1 metric is less affected by the perturbations than other NC metrics (e.g., NC2)

Numerical results: (*more results in the paper, including an “interference” study)

Training ResNet18 on CIFAR-10 with various weight decay (WD) settings –
Modifying WD of feature mapping: more deviation from the baseline than modifying WD of last layer

MSE
loss

CE
loss

The 𝑑𝑛×𝑑𝑛 blocks have 
closed-form expressions 
made of  𝑾∗, 𝑯∗, 𝜆", 𝜆!, 𝛽

Constraining the UFM

Recall the UFM: min
W ,H

L(W ,H) := 1
2KnkWH � Y k2

F
+ �W

2K kW k2
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F

We consider a “penalized” variant:
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2KnkH � H0k2F
The � � 1 case: can be interpreted as a simple architecture between H0 and H

(e.g., a single layer) that significantly constrains H . (Practical DL motivation)

Corollary (Depthwise decrease in NC1 – via gradient flow theory)

Assume that H0 is non-collapsed (i.e., ⌃W (H0) 6= 0). For � > C = C (H0), the

minimizer of f , H1/� , obeys gNC 1(H1/�) < gNC 1(H0).

Corollary (Transferring orthogonal collapse properties from H0)

Let d � K , �H�W < 1, and let (W ⇤,H⇤) be a minimizer of L(W ,H). Then, the
minimizer of f (W ,H ;H0 = H

⇤) is unique and it is given by (W ⇤,H⇤).

Since we know a lot on (W ⇤,H⇤) — we can explore the near-collapse regime via
perturbation analysis
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