The Neural Collapse (NC) Phenomenon

DNN-based classifiers (of *K* classes) can be typically represented as

$$\psi_{\Theta}(x) = Wh_{\theta}(x) + b$$

where $x \in \mathbb{R}^D$ is the sample, $h_{\theta}(\cdot): \mathbb{R}^D \to \mathbb{R}^d$ is the (deep) feature mapping, and $\{W \in \mathbb{R}^{K \times d}, b \in \mathbb{R}^K\}$ is the last layer classifier. Learnable params: $\Theta = \{W, b, \theta\}$.

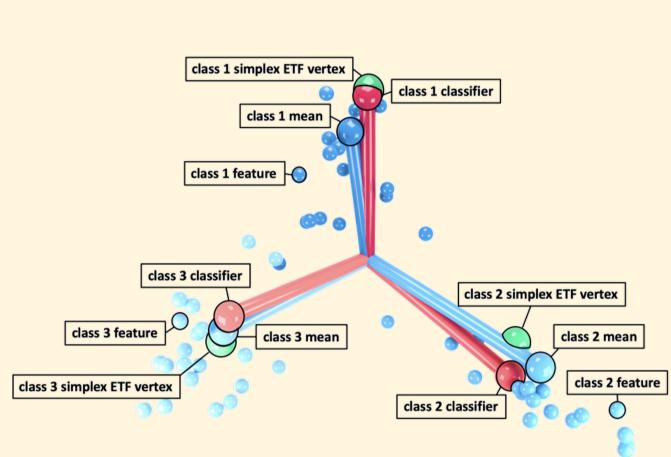
- Common practice: Keep optimizing the network's parameters after the training error vanishes to further push the training loss toward zero.
- ▶ The "Neural Collapse" (NC) phenomenon [Papyan et al. (2020)] has been empirically observed in this phase of training with CE loss (or MSE loss [Han et al. (2022)]): Let $\mathbf{H} \coloneqq \left[\mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{1,1}), \dots, \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{1,n}), \dots, \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{K,1}), \dots, \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{K,n})\right] \in \mathbb{R}^{d \times Kn}$.
- (NC1): Decrease in within-class variability of features $h_{\theta}(x)$:

 $\|H - \overline{H} \otimes \mathbf{1}_n^{\mathsf{T}}\|_F$ decreases, where $\overline{H} \coloneqq [\overline{h}_1, ..., \overline{h}_K] \in \mathbb{R}^{d \times K}$ are classes' mean features

- (NC2): Increase in the similarity of the mean features to a simplex ETF structure: $\left\| \left(\overline{\boldsymbol{H}} - \overline{\boldsymbol{h}}_{G} \boldsymbol{1}_{K}^{\mathsf{T}} \right)^{\mathsf{T}} \left(\overline{\boldsymbol{H}} - \overline{\boldsymbol{h}}_{G} \boldsymbol{1}_{K}^{\mathsf{T}} \right) - \rho \left(\boldsymbol{I}_{K} - \frac{1}{K} \boldsymbol{1}_{K} \boldsymbol{1}_{K}^{\mathsf{T}} \right) \right\|_{F}$ decreases, for some $\rho > 0$
- (NC3): Increase in the alignment of the last weights W^{T} and the mean features \overline{H} : $\|\boldsymbol{W}(\overline{\boldsymbol{H}} - \overline{\boldsymbol{h}}_{G}\boldsymbol{1}_{K}^{\mathsf{T}}) - \tilde{\rho}\left(\boldsymbol{I}_{K} - \frac{1}{K}\boldsymbol{1}_{K}\boldsymbol{1}_{K}^{\mathsf{T}}\right)\|_{F}$ decreases, for some $\tilde{\rho} > 0$

Empirical observations in practical settings:

- "NC metrics" typically plateau above zero (even when reducing LR)
- The margin from exact NC depends on the dataset complexity, DNN architecture, hyperparameter tuning, etc.
- Interesting depthwise behavior: gradual reduction of within-class variability (NC1 metric)



The Unconstrained Features Model (UFM)

The typical way to optimize the DNN's parameters (empirical risk minimization):

$$\min_{\mathbf{\Theta}} \frac{1}{Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}(\mathbf{W} \mathbf{h}_{\mathbf{\theta}}(\mathbf{x}_{k,i}) + \mathbf{b}, \mathbf{y}_{k}) + \mathcal{R}(\mathbf{\Theta})$$

where $y_k \in \mathbb{R}^K$ is one-hot vector, $\mathcal{L}(\cdot, \cdot)$ is a loss function (e.g., CE or MSE) and $\mathcal{R}(\cdot)$ is a regularization term (e.g., squared ℓ_2 -norm)

▶ [Mixon et al. (2020)] suggested to explore NC via the Unconstrained Features Model (UFM) – the features $\{h_{k,i} \coloneqq h_{\theta}(x_{k,i})\}$ are free optimization variables:

$$\min_{\boldsymbol{W},\boldsymbol{b},\{\boldsymbol{h}_{k,i}\}} \frac{1}{Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}(\boldsymbol{W}\boldsymbol{h}_{k,i} + \boldsymbol{b}, \boldsymbol{y}_{k}) + \mathcal{R}(\boldsymbol{W}, \boldsymbol{b}, \{\boldsymbol{h}_{k,i}\})$$

- Most (if not all) of the existing theoretical works on NC consider UFM settings. The typical result: All the minimizers exhibit exact NC structures (zero NC metrics) with no effect of regularization hyperparameters on the structure
- UFMs limitations: cannot explain the aforementioned observations

This Work Is About:

Exploiting knowledge on gradient dynamics and minimizers of UFMs for studying practical (non-exact) NC behavior.

Existing and New UFM Results

Theorem 3.1 in [Tirer & Bruna, 2022] (characterization of minimizers)

Let $d \geq K$, $c := \sqrt{\lambda_H \lambda_W}$ and $\rho := \max\{(1-c)\sqrt{\lambda_W/\lambda_H}, 0\}$. Any global minimizer $(\boldsymbol{W}^*, \boldsymbol{H}^*)$ of

$$\min_{\boldsymbol{W} \in \mathbb{R}^{K \times d}, \, \boldsymbol{H} \in \mathbb{R}^{d \times Kn}} \mathcal{L}(\boldsymbol{W}, \boldsymbol{H}) := \frac{1}{2Kn} \|\boldsymbol{W}\boldsymbol{H} - \boldsymbol{Y}\|_F^2 + \frac{\lambda_W}{2K} \|\boldsymbol{W}\|_F^2 + \frac{\lambda_H}{2Kn} \|\boldsymbol{H}\|_F^2$$

obeys that $m{H}^* = \overline{m{H}} \otimes 1_n^ op$ for some $\overline{m{H}} := [m{h}_1^*, \dots, m{h}_K^*] \in \mathbb{R}^{d imes K}$, $oldsymbol{W}^{* op}=\sqrt{\lambda_H/\lambda_W}oldsymbol{\overline{H}}$, and

$$oldsymbol{\overline{H}}^ op oldsymbol{\overline{H}} =
ho oldsymbol{I}_{\mathcal{K}} \implies egin{array}{c} (oldsymbol{\overline{H}} - oldsymbol{h}_G^* 1_K^ op)^ op (oldsymbol{\overline{H}} - oldsymbol{h}_G^* 1_K^ op) \end{array} =
ho (oldsymbol{I}_{\mathcal{K}} - rac{1}{oldsymbol{\kappa}} 1_{\mathcal{K}} 1_K^ op)$$

- New & useful NC1 metric: $\widetilde{NC}_1(H) := \operatorname{trace}(\Sigma_W(H))/\operatorname{trace}(\Sigma_B(H))$ $\Sigma_W(H)$ and $\Sigma_B(H)$ are the within- and between-class covariance matrices
- More amenable for theoretical analysis than $NC_1(H) := \frac{1}{\kappa} \operatorname{trace}(\Sigma_W(H)\Sigma_B^{\dagger}(H))$
- For fixed H, the minimizer w.r.t. W: $W^*(H) = YH^T(HH^T + n\lambda_W I_d)^{-1}$
- ▶ [Han et al. (2022)] empirically showed that $||WH Y||_F^2 ||W^*(H)H Y||_F^2$ is small during MSE minimization of practical DNN classifiers

Theorem (NC1 metric decreases along the gradient flow)

Assume that $\lambda_W > 0$, $\lambda_H \ge 0$, and that H_0 is non-collapsed (i.e., $\Sigma_W(H_0) \ne 0$). Then, along the gradient flow: $\frac{d\mathbf{H}_t}{dt} = -Kn\nabla\mathcal{L}(\mathbf{W}^*(\mathbf{H}_t), \mathbf{H}_t)$

- $NC_1(H_t)$ strictly decreases along the flow until it reaches zero.
- $t \mapsto e^{2\lambda_H t} \operatorname{trace}(\Sigma_W(H_t))$ decreases along the flow. In particular, when $\lambda_H > 0$, $\mathrm{trace}(\boldsymbol{\Sigma}_W(\boldsymbol{H}_t))$ decays exponentially.
- $t \mapsto e^{2\lambda_H t} \operatorname{trace}(\Sigma_B(H_t))$ strictly increases along the flow.
- We got with minimal assumptions : separation between the behavior of Σ_W and Σ_B along the flow, $\widetilde{NC}_1 \to 0$ exponentially if $\lambda_H > 0$,

New Model: Constraining the UFM

 $\min_{\boldsymbol{W},\boldsymbol{H}} f(\boldsymbol{W},\boldsymbol{H};\boldsymbol{H}_0) := \frac{1}{2Kn} \|\boldsymbol{W}\boldsymbol{H} - \boldsymbol{Y}\|_F^2 + \frac{\lambda_W}{2K} \|\boldsymbol{W}\|_F^2 + \frac{\lambda_H}{2Kn} \|\boldsymbol{H}\|_F^2 + \frac{\beta}{2Kn} \|\boldsymbol{H} - \boldsymbol{H}_0\|_F^2$

- The $\beta \gg 1$ case: can be interpreted as simple architecture between H_0 and Hthat significantly constrains H (e.g., H_0 are features one layer before H)
- Practical DL motivation for $H \approx H_0$: some ResNets, neural ODE, and DEQ

Corollary (Transferring orthogonal collapse properties from H_0)

Let $d \geq K$, $\lambda_H \lambda_W < 1$, and let (W^*, H^*) be a minimizer of $\mathcal{L}(W, H)$. Then, the minimizer of $f(W, H; H_0 = H^*)$ is unique and it is given by (W^*, H^*) .

- Since we know a lot on (W^*, H^*) minimizer of UFM we can explore the near-collapse regime via perturbation analysis
- First order optimality condition:

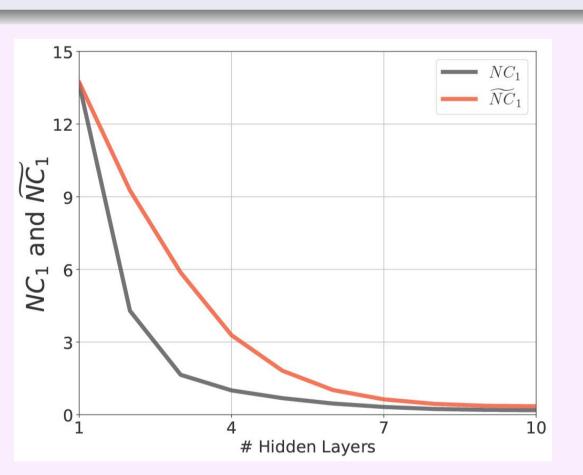
$$\frac{\boldsymbol{H}_{1/\beta} - \boldsymbol{H}_0}{1/\beta} = -Kn\nabla\mathcal{L}(\boldsymbol{W}^*(\boldsymbol{H}_{1/\beta}), \boldsymbol{H}_{1/\beta})$$

where $H_{1/\beta} = \min_{\mathbf{H}} f(\mathbf{W}^*(\mathbf{H}), \mathbf{H}; \mathbf{H}_0) = \min_{\mathbf{H}} \mathcal{L}(\mathbf{W}^*(\mathbf{H}), \mathbf{H}) + \frac{\beta}{2Kn} ||\mathbf{H} - \mathbf{H}_0||_F^2$

Corollary (Depthwise decrease in NC1 – via gradient flow theory)

Assume that H_0 is non-collapsed (i.e., $\Sigma_W(H_0) \neq 0$). For $\beta > C = C(H_0)$, the minimizer of f, $H_{1/\beta}$, obeys $NC_1(H_{1/\beta}) < NC_1(H_0)$.

Numerical results: Training an MLP on CIFAR-10 in layer-wise fashion (akin to updating H_0 in our model with the previous $H_{1/\beta}$)

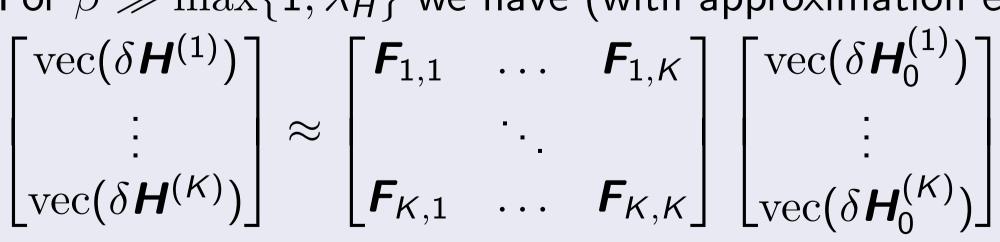


Analysis of the Near-Collapse Regime

Theorem (Perturbation analysis around collapse for $eta\gg 1$)

Let d > K, $\lambda_H \lambda_W < 1$, and $H_0 = H^*$ where (W^*, H^*) is a minimizer of \mathcal{L} (i.e., collapsed). Set δH_0 , and let $(\tilde{W}^*, \tilde{H}^*)$ be the minimizer of $f(\cdot, \cdot; \tilde{H}_0 = H_0 + \delta H_0)$. Define $\delta \mathbf{H} := \mathbf{H}^* - \mathbf{H}^*$.

For $\beta \gg \max\{1, \lambda_H\}$ we have (with approximation error of $O(\beta^{-2}, \|\delta H_0\|^2)$)



Theorem (Spectral analysis of inter/intra class blocks)

Consider the setting of the previous theorem and let $k, \tilde{k} \in [K]$ with $k \neq \tilde{k}$. We have that $F_{k,k}$ is full rank, $F_{k,\tilde{k}}$ is rank-1, $\sigma_{max}(F_{k,k})=1$ and

$$\sigma_{min}(\mathbf{F}_{k,k}) = 1 - \beta^{-1} \sqrt{\lambda_H/\lambda_W}$$
 $\sigma_{max}(\mathbf{F}_{k,\tilde{k}}) = 2\beta^{-1} \lambda_H (1 - \sqrt{\lambda_H\lambda_W})$
(*Actually, we compute the entire spectra)

d = 10n = 10

The $dn \times dn$ blocks have

closed-form expressions

made of $W^*, H^*, \lambda_W, \lambda_H, \beta$

- Insights gained from the model:
- Increasing λ_H : increasing the intra-class (diagonal) blocks attenuation
- Increasing λ_W : increasing the inter-class "interference" blocks attenuation
- Main insight: the intra-class blocks (the effect of perturbation in a certain class in H_0 on the features of the same class in H) are the dominant. So λ_H plays the major role.
- NC1 metric is less affected by the perturbations than other NC metrics (e.g., NC2)

Numerical results: (*more results in the paper, including an "interference" study) Training ResNet18 on CIFAR-10 with various weight decay (WD) settings – Modifying WD of feature mapping: more deviation from the baseline than modifying WD of last layer

