Inverse problems

- The goal: reconstruct x from y
- The common approach until not so long ago:
 Design a specific algorithm for each signal prior and observations model
 - For example, design/apply optimization algorithm
 $$\min_{\tilde{x}} \ell(\tilde{x}, y) + \beta s(\tilde{x})$$
 - Drawback: how to define $s(\tilde{x})$ for sophisticated signals (e.g. natural images)?
Inverse problems

- The goal: reconstruct x from y
- The common approach now:
 Design a specific algorithm for each signal prior and observations model
 - Collect/synthesize a training set $\{x_i, y_i\}$ and learn a DNN $f_\theta(y)$ by $\min_\theta \sum_i \|f_\theta(y_i) - x_i\|$
 - Drawback: huge performance drop when the observation model used in training is inexact
Inverse problems

- The goal: reconstruct x from y
- In this talk:
 - We show a promising way to balance between the two approaches
 - Fast and simple optimization algorithm that can handle many observation models
 - Enjoying the developments in deep learning to better handle the prior
The observation model

- In many image restoration problems the observations can be formulated by a linear model

\[y = Ax + e \]

- \(x \in \mathbb{R}^n \) represents the unknown original image
- \(y \in \mathbb{R}^m \) represents the observations
- \(A \in \mathbb{R}^{m \times n} \) is the degradation matrix (known)
- \(e \in \mathbb{R}^m \) is a noise vector (often assumed to be Gaussian)
The observation model

- In many image restoration problems the observations can be formulated by a linear model:

\[y = Ax + e \]

- Denoising: \(A = I_n \)
- Deblurring: \(A \) is a blurring operator
- Super-resolution: \(A \) composed of blurring and down-sampling
- Other examples: compressed sensing, inpainting, etc.
Typical reconstruction strategy

- Minimize a cost function composed of LS fidelity term and a prior term

\[
\min_{\tilde{x}} \frac{1}{2} \|y - A\tilde{x}\|_2^2 + \beta s(\tilde{x})
\]

- \(s(\tilde{x}) \) is the prior term (regularizer) – required because the measurements do not suffice for a successful recovery (ill-posed inverse problem)

- \(\beta > 0 \) hyper-parameter that controls the level of regularization

- Popular priors: total-variation (convex, explicit), BM3D (non-convex, implicit), etc.
Minimize a cost function composed of LS fidelity term and a prior term

$$\min_{\tilde{x}} \frac{1}{2} \| y - A\tilde{x} \|_2^2 + \beta s(\tilde{x})$$

Optimization methods:
- (Sub-)Gradient descent
 - Requires a lot of iterations (extremely slow)
 - Yields bad local minima for non-convex priors
Typical reconstruction strategy

- Minimize a cost function composed of LS fidelity term and a prior term

\[
\min_{\tilde{x}} \frac{1}{2} \| y - A\tilde{x} \|^2_2 + \beta s(\tilde{x})
\]

- Optimization methods:
 - Variable splitting + ADMM
 - Variable splitting + quadratic penalty method ("HQS")

- More hyper-parameters (for HQS – many more!)
- For non-convex priors: hyper-parameter tuning is burdensome and strongly affects the results
Minimize a cost function composed of LS fidelity term and a prior term

\[
\min_{\tilde{x}} \frac{1}{2} \|y - A\tilde{x}\|_2^2 + \beta s(\tilde{x})
\]

Optimization methods:
- Proximal gradient method ("PGM" / "ISTA")
- Accelerated proximal gradient method ("APGM" / "FISTA")

- Simple
- Can avoid additional hyper-parameter tuning
- However: empirically, for non-convex priors may yield worse results than well-tuned ADMM, HQS (e.g. for deblurring, SR)
“ISTA” on LS + prior cost function

ISTA applied on

$$\min_{\tilde{x}} \frac{1}{2} \|y - A\tilde{x}\|_2^2 + \beta s(\tilde{x})$$

Set step-size $$\mu = \frac{1}{\|A^T A\|}$$ (ensures convergence for convex $$s(\cdot)$$) [Beck and Teboulle, 2009]

Iterate:

$$\tilde{z}_k = \tilde{x}_{k-1} - \mu A^T (A\tilde{x}_{k-1} - y)$$
$$\tilde{x}_k = \text{prox}_{\mu \beta s(\cdot)}(\tilde{z}_k)$$

$$\text{prox}_{s(\cdot)}(\tilde{z}) := \arg\min_{\tilde{z}} \frac{1}{2} \|\tilde{z} - \tilde{x}\|_2^2 + s(\tilde{z})$$ [Moreau, 1965] originally defined for convex $$s(\cdot)$$
“ISTA” on LS + prior cost function

ISTA applied on

\[\min_{\tilde{x}} \frac{1}{2} \|y - A\tilde{x}\|_2^2 + \beta s(\tilde{x}) \]

Set step-size \(\mu = \frac{1}{\|A^TA\|} \) (ensures convergence for convex \(s(\cdot) \))

Iterate:

\[
\begin{align*}
 \tilde{z}_k &= \tilde{x}_{k-1} - \mu A^T(A\tilde{x}_{k-1} - y) \\
 \tilde{x}_k &= \text{prox}_{\mu \beta s(\cdot)}(\tilde{z}_k)
\end{align*}
\]

\[
\text{prox}_{\mu \beta s(\cdot)}(\tilde{z}) = \arg\min_{\tilde{z}} \frac{1}{2} \|\tilde{z} - \tilde{x}\|_2^2 + \mu \beta s(\tilde{z})
\]

\[
= \arg\min_{\tilde{z}} \frac{1}{2(\sqrt{\mu \beta})^2} \|\tilde{z} - \tilde{x}\|_2^2 + s(\tilde{z}) := \mathcal{D}(\tilde{z}; \sqrt{\mu \beta})
\]

Gaussian denoiser associated with prior \(s(\cdot) \)
“ISTA” on LS + prior cost function

- ISTA applied on \(\min_{\tilde{x}} \frac{1}{2} \|y - A\tilde{x}\|_2^2 + \beta s(\tilde{x}) \)

 Set step-size \(\mu = \frac{1}{\|A^TA\|} \) (ensures convergence for convex \(s(\cdot) \))

 Iterate:
 \[
 \tilde{z}_k = \tilde{x}_{k-1} - \mu A^T (A\tilde{x}_{k-1} - y) \\
 \tilde{x}_k = \mathcal{D}(\tilde{z}_k; \sqrt{\mu \beta})
 \]

- The plug-and-play (P&P) denoisers concept:
 Use **off-the-shelf denoisers** to impose the prior
 (can be done also in ADMM and HQS)

 [Venkatakrishnan et al., Plug-and-play priors, 2013]
Deblurring experiments

- Image deblurring with non-convex P&P priors (BM3D, and pre-trained CNN denoisers):

PSNR vs. iteration number, averaged over 4 scenarios and 8 classical images

Similar behavior (with smaller gap) observed for super-resolution tasks
Deblurring experiments

- Image deblurring with non-convex P&P priors (BM3D, and pre-trained CNN denoisers):

- Our IDBP also uses ISTA... so what makes it faster and better?

[Tirer and Giryes, Iterative Denoising and Back Projections, 2018]
Back-projection (BP) fidelity term

- Typical cost function: LS fidelity + prior
 \[\min_{\tilde{x}} \frac{1}{2} \| y - A\tilde{x}\|_2^2 + \beta s(\tilde{x}) \]

- Proposed cost function: BP fidelity + prior
 \[\min_{\tilde{x}} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \]

- Assume ill-posed problems: \(m \leq n \) and \(\text{rank}(A) = m \)

- \(A^\dagger := A^T (AA^T)^{-1} \) (“back-projection” from \(A\mathbb{R}^n \) to \(\mathbb{R}^n \))

- LS and BP coincide for denoising and inpainting, but differ for deblurring, super-resolution, Gaussian compressed sensing, etc.
“ISTA” on BP + prior cost function

ISTA applied on
\[\min_{\tilde{x}} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \]

Set step-size \(\mu = \frac{1}{\| A^\dagger A \|} = 1 \) (ensures convergence for convex \(s(\cdot) \))

Iterate:
\[
\begin{align*}
\tilde{z}_k &= \tilde{x}_{k-1} - \mu A^\dagger (A\tilde{x}_{k-1} - y) \\
\tilde{x}_k &= D(\tilde{z}_k; \sqrt{\mu \beta})
\end{align*}
\]
“ISTA” on BP + prior cost function

ISTA applied on
\[
\min_\tilde{x} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|_2^2 + \beta s(\tilde{x})
\]

Iterate:
\[
\begin{align*}
\tilde{z}_k &= \tilde{x}_{k-1} - A^\dagger (A\tilde{x}_{k-1} - y) \\
\tilde{x}_k &= \mathcal{D}(\tilde{z}_k; \sqrt{\beta})
\end{align*}
\]

We call this method IDBP:
Iterative Denoising: \(\tilde{x}_{k-1} = \mathcal{D}(\tilde{z}_{k-1}; \sqrt{\beta}) \)
and **Back-Projections:** \(\tilde{z}_k = \arg\min_{\tilde{z}} \left\| \tilde{z} - \tilde{x}_{k-1} \right\|_2^2 \) s.t. \(A\tilde{z} = y \)
“ISTA” on BP + prior cost function

- ISTA applied on
 \[\min_{\tilde{x}} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \]

Iterate:
\[\tilde{z}_k = \tilde{x}_{k-1} - A^\dagger (A\tilde{x}_{k-1} - y) \]
\[\tilde{x}_k = \mathcal{D}(\tilde{z}_k; \sqrt{\beta}) \]

- We call this method IDBP
- The \(A^\dagger \) operation can be performed efficiently by conjugate gradients, FFT (in certain cases), or pre-computation.
BP vs LS fidelity terms – mathematical analysis

- **LS cost:** LS fidelity + prior
 \[
 \frac{1}{2} \| y - A\tilde{x} \|^2_2 + \beta s(\tilde{x}) = \frac{1}{2} \tilde{x}^T A^T A\tilde{x} - y^T A\tilde{x} + c + \beta s(\tilde{x})
 \]

- **BP cost:** BP fidelity + prior
 \[
 \frac{1}{2} \| A^+ y - A^+ A\tilde{x} \|^2_2 + \beta s(\tilde{x}) = \frac{1}{2} \tilde{x}^T A^+ A\tilde{x} - y^T A^+ A^T \tilde{x} + c + \beta s(\tilde{x})
 \]

- **SVD of** \(A = U[\text{diag}\{\lambda_1, \ldots, \lambda_m\}, 0_{n-m}]V^T \)
 - Hessian of LS term: \(A^T A = \sum_{i=1}^{m} \lambda_i^2 v_i v_i^T \)
 - Hessian of BP term: \(A^+ A = \sum_{i=1}^{m} v_i v_i^T \)
 - The “restricted condition number” of BP’s Hessian is better, yet both Hessians are rank deficient

- Implications for MSE and converges rates of algorithms?

[Tirer and Giryes, BP Term for Ill-Posed Linear Inverse Problems, 2019]
BP vs LS fidelity terms – mathematical analysis (MSE)

- Assume no noise $y = Ax$
- LS cost: LS fidelity + prior
 \[
 \frac{1}{2} ||Ax - A\tilde{x}||_2^2 + \beta s(\tilde{x}) = \frac{1}{2} (x - \tilde{x})^T A^T A(x - \tilde{x}) + \beta s(\tilde{x})
 \]
 \[
 = \frac{1}{2} \sum_{i=1}^{m} \lambda_i^2 |v_i^T (x - \tilde{x})|^2 + \beta s(\tilde{x})
 \]
- BP cost: BP fidelity + prior
 \[
 \frac{1}{2} ||A^\dagger Ax - A^\dagger A\tilde{x}||_2^2 + \beta s(\tilde{x}) = \frac{1}{2} (x - \tilde{x})^T A^\dagger A(x - \tilde{x}) + \beta s(\tilde{x})
 \]
 \[
 = \frac{1}{2} \sum_{i=1}^{m} |v_i^T (x - \tilde{x})|^2 + \beta s(\tilde{x})
 \]
- Who resembles $||x - \tilde{x}||_2^2 = \sum_{i=1}^{n} |v_i^T (x - \tilde{x})|^2$ more?
BP vs LS fidelity terms – mathematical analysis (MSE)

- Empirical evidence (many experiments and priors: TV, BM3D, DnCNN, DCGAN, RED variants):
 - When the noise level is moderate: BP outperforms LS when the condition number of AA^T is bad. For example: super-resolution, deblurring, some Gaussian CS scenarios
 - If A has very small singular values (SR, deb) at some noise level BP becomes inferior to LS (regularization can help)

Fig. 10: Super-resolution with Gaussian filter and scale factor of 3, using TV prior and 100 iterations of FISTA. PSNR (averaged over 8 test images) vs. β (regularization parameter), for (a) $\sigma_e = 0$, and (b) $\sigma_e = \sqrt{2}$.

Fig. 12: Deblurring with uniform 9×9 blur kernel, using TV prior and 100 iterations of FISTA. PSNR (averaged over 8 test images) vs. β (regularization parameter), for (a) $\sigma_e = \sqrt{0.3}$, and (b) $\sigma_e = \sqrt{2}$.
BP vs LS fidelity terms – mathematical analysis (MSE)

Empirical evidence (many experiments and priors: TV, BM3D, DnCNN, DCGAN, RED variants):

- When the noise level is moderate:
 BP outperforms LS when the condition number of $\mathbf{A} \mathbf{A}^T$ is bad. For example: super-resolution, deblurring, some Gaussian CS scenarios

- If \mathbf{A} has very small singular values (SR, deb) at some noise level BP becomes inferior to LS (regularization can help)

Fig. 17: Super-resolution with Gaussian filter and scale factor of 3, using BM3D prior and 200 iterations of FISTA. PSNR (averaged over 8 test images) vs. β (regularization parameter), for (a) $\sigma_e = 0$, and (b) $\sigma_e = \sqrt{2}$.

Fig. 19: Deblurring with uniform 9×9 blur kernel, using BM3D prior and 200 iterations of FISTA. PSNR (averaged over 8 test images) vs. β (regularization parameter), for (a) $\sigma_e = \sqrt{0.3}$, and (b) $\sigma_e = \sqrt{2}$.
Empirical evidence (many experiments and priors: TV, BM3D, DnCNN, DCGAN, RED variants):

- When the noise level is moderate:
 BP outperforms LS when the condition number of AA^T is bad. For example: super-resolution, deblurring, some Gaussian CS scenarios

- If A has very small singular values (SR, deb) at some noise level BP becomes inferior to LS (regularization can help)
BP vs LS fidelity terms – mathematical analysis (MSE)

- Empirical evidence (many experiments and priors: TV, BM3D, DnCNN, DCGAN, RED variants):
 - When the noise level is moderate: BP outperforms LS when the condition number of AA^T is bad. For example: super-resolution, deblurring, some Gaussian CS scenarios
 - If A has very small singular values (SR, deb) at some noise level BP becomes inferior to LS (regularization can help)

Fig. 1: The (squared) singular values of A applied on a 64×64 image for: (a) SRx3 with 7×7 Gaussian filter ($\frac{\lambda_i^2}{\lambda_{m}^2} = 2.93e3$); (b) blurring with 9×9 uniform filter ($\frac{\lambda_i^2}{\lambda_{m}^2} = 1.46e7$); (c) CS with $m = 0.1n$ Gaussian measurements and Haar basis ($\frac{\lambda_i^2}{\lambda_{m}^2} = 3.63$); (d) CS with $m = 0.5n$ Gaussian measurements and Haar basis ($\frac{\lambda_i^2}{\lambda_{m}^2} = 33.36$).
BP vs LS fidelity terms – mathematical analysis (MSE)

- \[
\min_{\tilde{x}} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \quad \text{vs} \quad \min_{\tilde{x}} \frac{1}{2} \left\| y - A\tilde{x} \right\|_2^2 + \beta s(\tilde{x})
\]

- Consider simple Tikhonov regularization \(s(\tilde{x}) = \frac{1}{2} \| D \tilde{x} \|_2^2 \) and SVDs: \(A = U[\text{diag}\{\lambda_i\}, 0]V^T \), \(D^T D = V\text{diag}\{\gamma_i\}V^T > 0 \)

\[
MSE_{BP} = \text{bias}_{BP}^2 + \text{var}_{BP}
\]
\[
\text{bias}_{BP}^2 \triangleq \sum_{i=1}^{m} \left(\frac{\beta \gamma_i^2}{1 + \beta \gamma_i^2} \right)^2 [V^T x]^2_i + \sum_{i=m+1}^{n} [V^T x]^2_i
\]
\[
\text{var}_{BP} \triangleq \sum_{i=1}^{m} \frac{\sigma_e^2}{\lambda_i^2 (1 + \beta \gamma_i^2)^2},
\]
\[
MSE_{LS} = \text{bias}_{LS}^2 + \text{var}_{LS}
\]
\[
\text{bias}_{LS}^2 \triangleq \sum_{i=1}^{m} \left(\frac{\beta \gamma_i^2}{\lambda_i^2 (1 + \beta \gamma_i^2)} \right)^2 [V^T x]^2_i + \sum_{i=m+1}^{n} [V^T x]^2_i
\]
\[
\text{var}_{LS} \triangleq \sum_{i=1}^{m} \frac{\sigma_e^2}{\lambda_i^2 (1 + \beta \gamma_i^2 / \lambda_i^2)^2},
\]

- For same \(\beta \) and \(\lambda_i < 1 \): \(\text{bias}_{BP}^{(i)} < \text{bias}_{LS}^{(i)} \), \(\text{var}_{BP}^{(i)} > \text{var}_{LS}^{(i)} \)

[Tirer and Giryes, BP Term for Ill-Posed Linear Inverse Problems, 2019]
BP vs LS fidelity terms – mathematical analysis (MSE)

- \[\min_{\tilde{x}} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \quad \text{vs} \quad \min_{\tilde{x}} \frac{1}{2} \left\| y - A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \]

- Consider simple Tikhonov regularization \(s(\tilde{x}) = \frac{1}{2} \| D\tilde{x} \|_2^2 \) and SVDs: \(A = U[\text{diag}\{\lambda_i\}, 0]V^T \), \(D^T D = V\text{diag}\{\gamma_i\}V^T > 0 \)

\[
MSE_{BP} = \text{bias}^2_{BP} + \text{var}_{BP} \\
\text{bias}^2_{BP} \triangleq \sum_{i=1}^{m} \left(\frac{\beta \gamma_i^2}{1 + \beta \gamma_i^2} \right)^2 [V^T \underline{x}]_i^2 + \sum_{i=m+1}^{n} [V^T \underline{x}]_i^2 \\
\text{var}_{BP} \triangleq \sum_{i=1}^{m} \frac{\sigma_e^2}{\lambda_i^2(1 + \beta \gamma_i^2)^2} \\
\text{bias}^2_{LS} \triangleq \sum_{i=1}^{m} \left(\frac{\beta \gamma_i^2}{\lambda_i^2 + \beta \gamma_i^2} \right)^2 [V^T \underline{x}]_i^2 + \sum_{i=m+1}^{n} [V^T \underline{x}]_i^2 \\
\text{var}_{LS} \triangleq \sum_{i=1}^{m} \frac{\sigma_e^2}{\lambda_i^2(1 + \beta \gamma_i^2)^2} \\
\text{bias}^{(i)}_{BP} > \text{bias}^{(i)}_{LS}, \quad \text{var}^{(i)}_{BP} < \text{var}^{(i)}_{LS}
\]

[27]

[Tirer and Giryes, BP Term for Ill-Posed Linear Inverse Problems, 2019]
BP vs LS fidelity terms – mathematical analysis (MSE)

- Explanation for the advantage of BP for large $\frac{\lambda_1^2}{\lambda_m^2}$?
- Assume no noise $y = Ax$, then
 $$MSE_{BP} - MSE_{LS} = \sum_{i=1}^{m} bias_{BP}^2(i) - \sum_{i=1}^{m} bias_{LS}^2(i)$$
- Set $\beta_{BP} = \frac{\beta_{LS}}{\lambda_1^2}$
- We get
 $$\sum_{i=1}^{m} bias_{BP}^2(i) = \sum_{i=1}^{m} \left(\frac{\beta_{BP} y_i^2}{1 + \beta_{BP} y_i^2} \right)^2 [V^T x]_i^2$$
 $$= \sum_{i=1}^{m} \left(\frac{\beta_{LS} y_i^2}{\lambda_1^2 + \beta_{LS} y_i^2} \right)^2 [V^T x]_i^2$$
 $$\leq \sum_{i=1}^{m} \left(\frac{\beta_{LS} y_i^2}{\lambda_i^2 + \beta_{LS} y_i^2} \right)^2 [V^T x]_i^2 = \sum_{i=1}^{m} bias_{LS}^2(i)$$
BP vs LS fidelity terms – mathematical analysis (rate)

- \[\min_{\tilde{x}} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \] vs \[\min_{\tilde{x}} \frac{1}{2} \left\| y - A\tilde{x} \right\|_2^2 + \beta s(\tilde{x}) \]

- Recall: BP requires less (F)ISTA iterations than LS

![Graphs](Fig. 12: Super-resolution with Gaussian filter and scale factor of 3, using BM3D prior. PSNR (for best uniform setting of \(\beta \), averaged over 8 test images) vs. FISTA iteration number, for (a) \(\sigma_c = 0 \), and (b) \(\sigma_c = \sqrt{2} \).)

![Graphs](Fig. 14: Deblurring with uniform 9x9 blur kernel, using BM3D prior. PSNR (for best uniform setting of \(\beta \), averaged over 8 test images) vs. FISTA iteration number, for (a) \(\sigma_c = \sqrt{0.3} \), and (b) \(\sigma_c = \sqrt{2} \).)
BP vs LS fidelity terms – mathematical analysis (rate)

\[\min_{\tilde{x}} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|^2_2 + \beta s(\tilde{x}) \quad \text{vs} \quad \min_{\tilde{x}} \frac{1}{2} \left\| y - A\tilde{x} \right\|^2_2 + \beta s(\tilde{x}) \]

- Recall: BP requires less (F)ISTA iterations than LS
- We provide theoretical explanation for projected gradient descent (PGD) on the constrained formulations:

\[\min_{\tilde{x} : s(\tilde{x}) \leq R} \frac{1}{2} \left\| A^\dagger y - A^\dagger A\tilde{x} \right\|^2_2 \quad \text{vs} \quad \min_{\tilde{x} : s(\tilde{x}) \leq R} \frac{1}{2} \left\| y - A\tilde{x} \right\|^2_2 \]

- PGD for BP (with step-size that ensures convergence):

\[\tilde{x}_{k+1} = \mathcal{P}_{\{\tilde{x} : s(\tilde{x}) \leq R\}} (\tilde{x}_k - A^\dagger (A\tilde{x}_k - y)) \]

- PGD for LS (with step-size that ensures convergence):

\[\tilde{x}_{k+1} = \mathcal{P}_{\{\tilde{x} : s(\tilde{x}) \leq R\}} (\tilde{x}_k - \frac{1}{\|A^TA\|} A^T (A\tilde{x}_k - y)) \]
BP vs LS fidelity terms – mathematical analysis (rate)

- Toy example: “very restrictive prior”
 \[s(\tilde{x}) = \begin{cases}
 0, & \tilde{x}: Q_A \tilde{x} = Q_A x \\
 +\infty, & \text{else}
 \end{cases} \]

- \[\mathcal{P}\{\tilde{x}: s(\tilde{x}) \leq R\}(z) = P_A z + Q_A x \]

- For LS: \[\|\tilde{x}_{k+1} - x_*\|_2 \leq (1 - 1/\text{cond}(AA^T)) \|\tilde{x}_k - x_*\|_2 \]

- For BP: \[\tilde{x}_{k+1} = A^\dagger y + Q_A x \] (fixed)

- Hints that an advantage of BP may exist even for practical \(s(\tilde{x}) \) which only implicitly impose some restrictions on \(Q_A \tilde{x} \)

\[Q_A := I_n - P_A \]
\[P_A := A^\dagger A \]
Theorem (informal and simplified, generalizes LS results from [Oymak, Recht, and Soltanolkotabi, 2017]):

Apply PGD on $*\in\{\text{LS, BP}\}$ with $R = s(x)$ (recall, x is the latent signal) and assume no noise. Let c_s be 1 if $s(\cdot)$ is convex and 2 otherwise. Then,

$$
\|\tilde{x}_{k+1} - x\|_2 \leq c_s \cdot P_*(s(\cdot), x) \cdot \|\tilde{x}_k - x\|_2
$$

Let $P_{LS}(s(\cdot), x) := 1 - \frac{1}{\|A^TA\|} \inf_{u \in \mathcal{C}_s(x) \cap S^{n-1}} \frac{1}{2} \|Au\|_2^2$.

Let $P_{BP}(s(\cdot), x) := 1 - \inf_{u \in \mathcal{C}_s(x) \cap S^{n-1}} \frac{1}{2} \|(AA^T)^{-\frac{1}{2}}Au\|_2^2$.

Let $\mathcal{C}_s(x) := \text{cone}\{h \in \mathbb{R}^n : s(x + h) \leq s(x)\}$.
BP vs LS fidelity terms – mathematical analysis (rate)

- **Theorem** (informal and simplified, generalizes LS results from [Oymak, Recht, and Soltanolkotabi, 2017]):
 Apply PGD on \(* \in \{\text{LS, BP}\} \) with \(R = s(x) \) (recall, \(x \) is the latent signal) and assume no noise. Let \(c_s \) be 1 if \(s(\cdot) \) is convex and 2 otherwise. Then,
 \[
 \|\tilde{x}_{k+1} - x\|_2 \leq c_s \cdot P_*(s(\cdot), x) \cdot \|\tilde{x}_k - x\|_2
 \]
 Meaningful if \(c_s P_*(s(\cdot), x) < 1 \) (implies linear convergence) – guaranteed for \(P_{LS} \) in certain scenarios

- **Proposition**: for any full row-rank \(A \) we have
 \[
 P_{BP}(s(\cdot), x) \leq P_{LS}(s(\cdot), x)
 \]
 Implies that whenever PGD converges linearly for LS it also converges for BP (with better or equal rate)
BP vs LS fidelity terms – mathematical analysis (rate)

- The proof technique leads to the conjecture that $P_{BP}(s(\cdot), x) < P_{LS}(s(\cdot), x)$ holds with strict inequality, (at least) for Gaussian compressed sensing (CS) problems.

- CS experiments, $\frac{m}{n} = 0.5$ compression, SNR 20dB

Projection on ℓ_1-ball

Projection on DCGAN range
BP vs LS fidelity terms – mathematical analysis (rate)

We also obtained resembling results for general ISTA (subsumes PGD when the prior is convex indicator) if the prox of \(s(\cdot) \) is a contraction on \(Q_A \mathbb{R}^n \)

Condition B.2. Given the convex function \(\beta s(\cdot) \) and the full row-rank matrix \(A \), there exists \(0 < \sigma_{A, \beta s(\cdot)} \leq 1 \) such that

\[
\| \text{prox}_{\beta s(\cdot)}(\tilde{z}_1) - \text{prox}_{\beta s(\cdot)}(\tilde{z}_2) \|_2 \leq \| (P_A + (1 - \sigma_{A, \beta s(\cdot)} Q_A)) (\tilde{z}_1 - \tilde{z}_2) \|_2 \quad \forall \tilde{z}_1, \tilde{z}_2,
\]

where \(Q_A \triangleq I_n - P_A \) and \(P_A \triangleq A^\dagger A \) are the orthogonal projections onto the null space of \(A \) and the row space of \(A \), respectively.

Theorem B.3. Consider the penalized optimization problem (2) with convex \(s(\cdot) \) and twice differentiable convex \(\ell(\cdot) \) that satisfies \(\nabla \ell(\cdot) \in \text{range}(A^T) \) for a given full row-rank matrix \(A \). Denote by \(\bar{\sigma}_{max} \) the largest eigenvalue of \(\nabla^2 \ell \) and by \(\bar{\sigma}_{max} \) the smallest non-zero eigenvalue of \(\nabla^2 \ell \). Then, if Condition B.2 holds for \(\mu \beta s(\cdot) \) and \(A \), we have that the sequence \(\{\tilde{x}_t\} \) obtained by (34) with \(\mu = 1/\bar{\sigma}_{max} \) converges to a point \(x_* \) and obeys

\[
\| \tilde{x}_{t+1} - x_* \|_2 \leq \max \left\{ 1 - \frac{\tilde{\sigma}_{min}}{\tilde{\sigma}_{max}}, 1 - \sigma_{A, \beta s(\cdot)} \right\} \| \tilde{x}_t - x_* \|_2,
\]
BP vs LS fidelity terms – mathematical analysis (rate)

We also obtained resembling results for general ISTA (subsumes PGD when the prior is convex indicator) if the prox of \(s(\cdot) \) is a contraction on \(Q_A \mathbb{R}^n \)

Figure 9: Compressed sensing with different \(m/n \) ratios of Gaussian measurements and SNR of 20dB. PSNR (averaged over 4 test images) of PGD with \(\ell_1 \) prior versus iteration number (for \(R = 1.5e5 \)). Note that in these experiments the ratio \(\frac{\sigma_{\min}(AA^T)}{\sigma_{\max}(AA^T)} \) equals 0.0296, 0.0862 and 0.2721 for \(m/n \) ratios of 0.5, 0.3 and 0.1, respectively.
Deblurring experiments

- BSD68 dataset with the following scenarios:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$h(x_1, x_2)$</th>
<th>σ_e^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/(x_1^2 + x_2^2)$, $x_1, x_2 = -7, \ldots, 7$</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>$1/(x_1^2 + x_2^2)$, $x_1, x_2 = -7, \ldots, 7$</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9×9 uniform</td>
<td>≈ 0.3</td>
</tr>
<tr>
<td>4</td>
<td>$[1, 4, 6, 4, 1]^T [1, 4, 6, 4, 1]/256$</td>
<td>49</td>
</tr>
</tbody>
</table>

Average Deblurring Results (PSNR in dB / SSIM) for Scenarios 1-4 on BSD68 Dataset, and Run-Time (per Image) on Intel i7-7500U CPU @ 2.70 GHz

<table>
<thead>
<tr>
<th>Method</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
<th>Average</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD-BM3D</td>
<td>30.84 / 0.872</td>
<td>29.02 / 0.820</td>
<td>31.04 / 0.883</td>
<td>28.93 / 0.822</td>
<td>29.96 / 0.849</td>
<td>259s</td>
</tr>
<tr>
<td>P&P-BM3D</td>
<td>30.41 / 0.865</td>
<td>28.53 / 0.806</td>
<td>30.78 / 0.880</td>
<td>28.61 / 0.814</td>
<td>29.58 / 0.841</td>
<td>85s</td>
</tr>
<tr>
<td>IRCNN (≈25 DNNs)</td>
<td>31.17 / 0.877</td>
<td>29.31 / 0.832</td>
<td>30.84 / 0.865</td>
<td>29.16 / 0.830</td>
<td>30.12 / 0.851</td>
<td>34s</td>
</tr>
<tr>
<td>IDBP-BM3D</td>
<td>30.70 / 0.876</td>
<td>28.93 / 0.825</td>
<td>30.80 / 0.883</td>
<td>28.80 / 0.819</td>
<td>29.81 / 0.851</td>
<td>54s</td>
</tr>
<tr>
<td>Auto-tuned IDBP-BM3D</td>
<td>30.75 / 0.872</td>
<td>28.92 / 0.822</td>
<td>30.89 / 0.879</td>
<td>28.74 / 0.821</td>
<td>29.83 / 0.849</td>
<td>152s</td>
</tr>
<tr>
<td>IDBP-CNN (1 DNN per scenario)</td>
<td>31.17 / 0.882</td>
<td>29.19 / 0.830</td>
<td>31.12 / 0.878</td>
<td>29.13 / 0.828</td>
<td>30.15 / 0.855</td>
<td>35s</td>
</tr>
<tr>
<td>Auto-tuned IDBP-CNN (1 DNN per scenario)</td>
<td>31.13 / 0.881</td>
<td>29.18 / 0.828</td>
<td>31.01 / 0.876</td>
<td>29.11 / 0.826</td>
<td>30.11 / 0.853</td>
<td>56s</td>
</tr>
</tbody>
</table>

[Tirer and Giryes, Iterative Denoising and Back Projections, 2018]
Deblurring experiments

Original image

Deblurring of *Barbara* image, Scenario 4
Deblurring experiments

Blurred and noisy image

Deblurring of *Barbara* image, Scenario 4
Deblurring experiments

ADMM-BM3D
Tuned several hyper-params., PSNR=25.72

Deblurring of *Barbara* image, Scenario 4
Deblurring experiments

IDBP-BM3D
Tuned 1 hyper-param., PSNR=26.94

Deblurring of *Barbara* image, Scenario 4
Deblurring experiments

Original image

Deblurring of *cameraman* image, Scenario 3.
Deblurring experiments

Blurred and noisy image

Deblurring of *cameraman* image, Scenario 3.
Deblurring experiments

HQS-CNN (IRCNN)

~25 CNNs, tuned several hyper-params., PSNR=31.07

Deblurring of cameraman image, Scenario 3.
Deblurring experiments

IDBP-CNN

1 CNN, tuned 1 hyper-param., PSNR=31.32

Deblurring of *cameraman* image, Scenario 3.
Super-resolution experiments

“Ideal” observation model:

TABLE I: Super-resolution results (average PSNR in dB) for ideal (noiseless) observation model with bicubic and Gaussian downscaling kernels. Bold black indicates the leading method, and bold blue indicates the leading model-flexible method.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Set5</td>
<td>2</td>
<td>Bicubic</td>
<td>36.66</td>
<td>37.53</td>
<td>38.20</td>
<td>38.27</td>
<td>37.43</td>
<td>37.37</td>
<td>37.41</td>
<td>37.62</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Bicubic</td>
<td>32.75</td>
<td>33.66</td>
<td>34.76</td>
<td>34.74</td>
<td>33.39</td>
<td>33.42</td>
<td>33.44</td>
<td>33.60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Gaussian</td>
<td>30.42</td>
<td>30.54</td>
<td>30.65</td>
<td>30.74</td>
<td>33.38</td>
<td>31.31</td>
<td>33.48</td>
<td>33.73</td>
</tr>
<tr>
<td>Set14</td>
<td>2</td>
<td>Bicubic</td>
<td>32.42</td>
<td>33.03</td>
<td>34.02</td>
<td>34.12</td>
<td>32.88</td>
<td>33.00</td>
<td>32.95</td>
<td>33.09</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Bicubic</td>
<td>29.28</td>
<td>29.77</td>
<td>30.66</td>
<td>30.65</td>
<td>29.61</td>
<td>29.80</td>
<td>29.65</td>
<td>29.72</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Gaussian</td>
<td>27.71</td>
<td>27.80</td>
<td>27.54</td>
<td>27.80</td>
<td>29.63</td>
<td>28.33</td>
<td>29.68</td>
<td>29.79</td>
</tr>
<tr>
<td>BSD100</td>
<td>2</td>
<td>Bicubic</td>
<td>31.36</td>
<td>31.90</td>
<td>32.37</td>
<td>32.41</td>
<td>31.68</td>
<td>31.65</td>
<td>31.71</td>
<td>31.81</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Bicubic</td>
<td>28.41</td>
<td>28.82</td>
<td>29.32</td>
<td>29.32</td>
<td>28.62</td>
<td>28.67</td>
<td>28.63</td>
<td>28.68</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Gaussian</td>
<td>27.32</td>
<td>27.43</td>
<td>27.46</td>
<td>27.52</td>
<td>28.64</td>
<td>27.76</td>
<td>28.67</td>
<td>28.74</td>
</tr>
</tbody>
</table>

SRCNN, VDSR, EDSR+, RCAN are restricted to their training assumptions (ideal bicubic kernel case). ZSSR is slow (large inference run-time).

[Tirer and Giryes, Super-Resolution via Image-Adapted Denoising CNNs, 2019]
IDBP with image-adaptive CNN denoiser for super-resolution

- Use the IDBP-CNN method with exponentially decreasing noise level, but make the last CNN denoisers - Image Adaptive (IA):
 - Extract patches $\{ p_i \}$ from the input LR image that will serve as ground truth
 - Create their AWGN version with the noise level of the pre-trained denoiser $\{ p_i + \mathcal{N}(0, \sigma I) \}$
 - Fast and simple fine-tuning:
 $$ \min_{\theta} \sum_i \| f_{\theta}(p_i + \mathcal{N}(0, \sigma I)) - p_i \|_1 $$
 - Simple augmentation: random $\{0, 90, 180, 270\}$ rotations and mirror reflections
 - Simple training: fixed 320 iterations of ADAM
 - Optimization time is independent of the image size and the desired SR scale-factor
Super-resolution experiments

“Ideal” observation model:

Fig. 2: Super-resolution results (PSNR averaged on Set5 vs. iteration number) for IDBP-CNN with and without our image-adapted CNN approach: (a) SR x2 with bicubic kernel; (b) SR x3 with Gaussian kernel. A boost in performance is observed once the IDBP scheme starts using image-adapted CNN denoisers.
Super-resolution experiments

- Estimated non-ideal downscaling kernels:

TABLE II: Super-resolution results (average PSNR in dB) for 8 estimated (inexact) non-ideal downscaling kernels and scale factor of 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>EDSR+</th>
<th>RCAN</th>
<th>IRCNN</th>
<th>ZSSR</th>
<th>IDBP-CNN</th>
<th>IDBP-CNN-IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set5 (5×8)</td>
<td>29.99</td>
<td>30.01</td>
<td>32.30</td>
<td>33.35</td>
<td>33.33</td>
<td>33.46</td>
</tr>
<tr>
<td>Set14 (14×8)</td>
<td>27.45</td>
<td>27.48</td>
<td>29.24</td>
<td>29.30</td>
<td>29.89</td>
<td>29.96</td>
</tr>
</tbody>
</table>

Fig. 3: (a) Non-ideal downscaling kernels; (b) SR x2 of *monarch*, Set5. From left to right and top to bottom, fragments of: original image, LR image with the estimated kernel, EDSR, RCAN, ZSSR, IDBP-CNN and IDBP-CNN-IA.
Super-resolution experiments

- Real (old) LR images (all methods assume bicubic kernel):

![Images showing different super-resolution methods applied to a basketball player]

- LR
- EDSR+
- ZSSR
- IDBP-CNN
- IDBP-CNN-IA
Super-resolution experiments

- Real (old) LR images (all methods assume bicubic kernel):

<table>
<thead>
<tr>
<th>LR</th>
<th>EDSR+</th>
<th>ZSSR</th>
<th>IDBP-CNN</th>
<th>IDBP-CNN-IA</th>
</tr>
</thead>
</table>

![Real (old) LR images](image-url)
Recovery via generative prior

- We solved inverse problems with CNN denoisers prior
- Another recently popular prior: pre-trained GANs

\[G_\theta(\cdot) : \mathbb{R}^d \rightarrow \mathcal{X} \subset \mathbb{R}^n \quad (d \ll n) \]

One can constrain the recovery to the range of \(G_\theta(\cdot) \).
Recovery via generative prior

- We solved inverse problems with CNN denoisers prior
- Another recently popular prior: pre-trained GANs
 \[G_\theta(\cdot) : \mathbb{R}^d \to \mathcal{X} \subset \mathbb{R}^n \ (d \ll n) \]
 One can constrain the recovery to the range of \(G_\theta(\cdot) \)
- CSGM method [Bora et al., 2017]:
 \[\hat{z} = \arg\min_{z} \| y - AG_\theta(z) \|_2^2 \]
 \[\hat{x} = G_\theta(\hat{z}) \]
 Minimization w.r.t. \(z \) using GD, ADAM, etc.
- Drawbacks:
 - Non-convex optimization problem
 - **Limited representation capability**
 ("mode collapse")
GANs limited representation capability – examples for PGGAN

- Compressed sensing with $\frac{m}{n} = 0.3$ Fourier measurements

Original image

Naïve IFFT

CSGM
GANs limited representation capability – examples for PGGAN

- Super-resolution x16 with bicubic downscaling kernel

Original image

Bicubic upsampling

CSGM
Image-adaptive GAN (IAGAN)

- IAGAN method (optimize also the generator params.):

\[\hat{\theta}, \hat{z} = \arg\min_{\theta,z} \| y - AG_\theta(z) \|^2_2 \]

\[\hat{x} = G_\theta(\hat{z}) \]

Minimize by GD, ADAM, etc.
Use low LR and early stopping to avoid overriding valuable offline semantic information!

- The rationale:
 - Current GAN learning strategies cannot cover every sample of a complex distribution, thus, optimizing only \(z \) is not enough
 - The expressive power of DNNs (given by optimizing the weights \(\theta \) as well) allows to create a single specific sample that agrees with \(y \)
 - Incorporating external and internal learning

Examples for PGGAN

- Compressed sensing with $\frac{m}{n} = 0.3$ Fourier measurements

Original image

Naïve IFFT

DIP

CSGM

IAGAN
Examples for PGGAN

- Super-resolution x16 with bicubic downscaling kernel

Original image

Bicubic upsampling

DIP

CSGM

IAGAN
Compressed sensing experiments

Table 1: Compressed sensing with subsampled Fourier measurements. Reconstruction PSNR [dB] (left) and PS (Zhang et al. 2018) (right), averaged over 100 images from CelebA and CelebA-HQ, for compression ratios 0.3 and 0.5, with noise level of 10/255.

<table>
<thead>
<tr>
<th></th>
<th>CelebA</th>
<th>CelebA-HQ</th>
<th>DIP</th>
<th>CSGM</th>
<th>IAGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS ratio 0.3</td>
<td>19.23 / 0.540</td>
<td>19.65 / 0.625</td>
<td>25.96 / 0.139</td>
<td>24.97 / 0.566</td>
<td>25.50 / 0.092</td>
</tr>
<tr>
<td>CS ratio 0.5</td>
<td>20.53 / 0.495</td>
<td>20.45 / 0.597</td>
<td>27.21 / 0.125</td>
<td>26.29 / 0.535</td>
<td>27.59 / 0.066</td>
</tr>
</tbody>
</table>

![Figure 2: Compressed sensing with Gaussian measurement matrix using BEGAN. Reconstruction MSE (averaged over 100 images from CelebA) vs. the compression ratio \(m/n\).](image)
Super-resolution experiments

Table 2: Super-resolution with bicubic downscaling kernel. Reconstruction PSNR [dB] (left) and PS (Zhang et al. 2018) (right), averaged over 100 images from CelebA and CelebA-HQ, for scale factors 4, 8 and 16, with no noise.

<table>
<thead>
<tr>
<th></th>
<th>CelebA</th>
<th>Bicubic</th>
<th>DIP</th>
<th>CSGM</th>
<th>CSGM-BP</th>
<th>IAGAN</th>
<th>IAGAN-BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR x4</td>
<td>26.50 / 0.165</td>
<td>27.35 / 0.159</td>
<td>20.51 / 0.235</td>
<td>26.44 / 0.165</td>
<td>27.16 / 0.092</td>
<td>27.14 / 0.092</td>
<td></td>
</tr>
<tr>
<td>SR x8</td>
<td>22.39 / 0.212</td>
<td>23.45 / 0.339</td>
<td>20.23 / 0.240</td>
<td>22.71 / 0.212</td>
<td>23.49 / 0.158</td>
<td>23.53 / 0.157</td>
<td></td>
</tr>
<tr>
<td>SR x16</td>
<td>27.43 / 0.437</td>
<td>27.51 / 0.480</td>
<td>22.34 / 0.506</td>
<td>26.20 / 0.437</td>
<td>26.28 / 0.421</td>
<td>25.86 / 0.411</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CelebA-HQ</th>
<th>Bicubic</th>
<th>DIP</th>
<th>CSGM</th>
<th>CSGM-BP</th>
<th>IAGAN</th>
<th>IAGAN-BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR x8</td>
<td>29.94 / 0.398</td>
<td>30.01 / 0.400</td>
<td>22.62 / 0.505</td>
<td>28.54 / 0.398</td>
<td>28.76 / 0.387</td>
<td>28.76 / 0.360</td>
<td></td>
</tr>
<tr>
<td>SR x16</td>
<td>27.43 / 0.437</td>
<td>27.51 / 0.480</td>
<td>22.34 / 0.506</td>
<td>26.20 / 0.437</td>
<td>26.28 / 0.421</td>
<td>25.86 / 0.411</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Super-resolution with bicubic downscaling kernel. Reconstruction PSNR [dB] (left) and PS (Zhang et al. 2018) (right), averaged over 100 images from CelebA and CelebA-HQ, for scale factors 4, 8 and 16, with noise level of 10/255.

<table>
<thead>
<tr>
<th></th>
<th>CelebA</th>
<th>Bicubic</th>
<th>DIP</th>
<th>CSGM</th>
<th>IAGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR x4</td>
<td>24.72 / 0.432</td>
<td>24.19 / 0.280</td>
<td>20.57 / 0.238</td>
<td>25.54 / 0.133</td>
<td></td>
</tr>
<tr>
<td>SR x8</td>
<td>21.65 / 0.660</td>
<td>21.22 / 0.513</td>
<td>20.22 / 0.243</td>
<td>21.72 / 0.243</td>
<td></td>
</tr>
<tr>
<td>SR x16</td>
<td>26.31 / 0.801</td>
<td>27.61 / 0.430</td>
<td>21.60 / 0.519</td>
<td>26.30 / 0.421</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CelebA-HQ</th>
<th>Bicubic</th>
<th>DIP</th>
<th>CSGM</th>
<th>IAGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR x8</td>
<td>26.31 / 0.801</td>
<td>27.61 / 0.430</td>
<td>21.60 / 0.519</td>
<td>26.30 / 0.421</td>
<td></td>
</tr>
<tr>
<td>SR x16</td>
<td>25.02 / 0.781</td>
<td>24.20 / 0.669</td>
<td>21.31 / 0.516</td>
<td>24.73 / 0.455</td>
<td></td>
</tr>
</tbody>
</table>
Take home message

- You can use deep learning for handling only the prior in imaging inverse problems
 - No restrictions on the observation model due to the training phase: the same pre-trained DNNs (denoisers, GANs) are used for different tasks without re-training
 - Exploiting the “good things” in external data: better and faster than methods like DIP that train DNNs from scratch at test time

- BP fidelity term - an alternative to LS
 - Optim. requires less hyper-params and less iterations
 - Mathematical explanation for faster convergence and cases with improved results (see our papers)

- Image-adaptive approach: a simple method to incorporate external and internal learning
Teaser: Robustifying Off-the-Shelf Deep Super-Resolvers

- Inspired by “generalized sampling theory” we apply a correction filter on LR images to mimic bicubic downscaling model (assumed by many DNNs)

Example for SRx4 with Gaussian kernel

Bicubic proSR RCAN DBPN

g.t.
I thank my co-authors

Raja Giryes

Shady Abu Hussein
Thank you

Many experiments and mathematical analysis can be found in:

